Лекция 1

 

Введение

 

Цель преподавания дисциплины состоит в том, чтобы дать студентам достаточно полное представление об основных концепциях и принципах получения, преобразования и анализа различных видов математических моделей, используемых в теории автоматического управления для описания объектов управления различной природы и систем управления различных классов. Кроме того, студенты должны овладеть навыками решения практических задач, связанных с математическим моделированием в теории автоматического управления, рационально используя математический аппарат.

Широкий набор методов анализа и синтеза систем автоматического управления, различных форм представления математических моделей объектов различной природы, используемых специалистами и бакалаврами, требует решения в рамках дисциплины Математические основы теории автоматического управления (МОТАУ) следующих задач:

Изучение дисциплины базируется на том, что студент имеет соответствующую математическую подготовку в области дифференциального и интегрального исчислений, линейной алгебры, комплексных чисел и тригонометрических функций, а также знаком с основными понятиями и законами, рассматриваемыми в курсах теоретических основ электротехники и теоретической механики. Обучение в 4 семестре происходит параллельно с изучением ТОЭ (часть 2), в 5 семестре – с изучением ТАУ (часть 1).

Дисциплина рассчитана на изучение в течение 4 и 5 семестров (2 и 3 курс), включает в свой состав 42 лекционных часа, 28 часов практических занятий и 14 часов лабораторного практикума (в 5 семестре).

Дисциплина включает в себя следующие основные разделы:

 

Дробно-рациональные функции

 

Дробно-рациональные функции комплексного переменного в различных формах широко используют в ТАУ для представления передаточных функций и решения задач синтеза и анализа САУ.

Дробно-рациональная функция некоторого действительного или комплексного переменного имеет следующий вид:

(1)

где - полиномы числителя и знаменателя, - действительные числа, - порядок числителя, - порядок знаменателя (всей дробно-рациональной функции функции), - для функций используемых в ТАУ.

Полиномы дробно-рациональной функции могут быть представлены в виде произведения биномов (разложение многочлена на сомножители), тогда функция может быть представлена в форме Боде

(2)

где - корни уравнения , - корни характеристического уравнения .

Корни уравнения называют нулями дробно-рациональной функции , так как

.

Корни характеристического уравнения называют полюсами дробно-рациональной функции, так как

.

Полюсы и нули могут быть действительными и комплексно-сопряженными числами. Таким образом, задача представления функции в форме Боде сводится к поиску корней уравнений, образованных полиномами числителя и знаменателя.

Их принято располагать на плоскости комплексной переменной , обозначая расположение полюсов крестиками, а нулей кружками. Для лучшего освоения этого материала необходимо освежить в памяти сведения из высшей математики по операциям с комплексными числами. Нули, а особенно полюсы дробно-рациональных функций изображают на плоскости комплексного переменного . На рис. 1 показано расположение полюсов и нулей некоторой дробно-рациональной функции.

Рис. 1

Мнимая ось делит плоскость на правую и левую полуплоскости. Нули и полюсы, расположенные в правой полуплоскости, называют правыми, в левой полуплоскости – левыми. Комплексные полюсы и нули всегда располагаются парами симметрично относительно действительной оси; такие пары корней называют комплексно сопряженными корнями. Если среди нулей и полюсов встречаются два или несколько одинаковых, их называют кратными в отличие от остальных, которых называют простыми. Кратность определяется числом одинаковых нулей или полюсов (– 2). Рассмотрим пример получения формы Боде.

Пример

Представьте дробно-рациональную функцию

в форме Боде и покажите расположение полюсов и нулей дробно-рациональной функции на комплексной плоскости.

Решение

Найдем корни уравнения

.

Получаем два комплексно-сопряженных корня (нуля)

, .

Найдем полюсы

.

Получаем три полюса

.

Покажем расположение нулей и полюсов на комплексной плоскости (см. рис. 2).

Рис. 2

Дробно-рациональную функцию (1) часто представляют в виде суммы простейших дробей (форма Хэвисайта)

(3)

где - корни характеристического уравнения , - коэффициенты разложения, которые находят по следующей функции:

(4)

Такое представление дробно-рациональной функции возможно, если полюсы – простые, а .

Функция, которая имеет один нулевой полюс, может быть представлена в следующем виде:

В этом случае вместо формул (3), (4) применяют выражение

(5)

где - ненулевые полюсы , корни уравнения ,

(6)

Следовательно, представление дробно-рациональной функции в форме Хэвисайта сводится к нахождению полюсов дробно-рациональной функции и рациональному использованию формул разложения. Рассмотрим ряд примеров получения формы Боде.

Пример

Представьте дробно-рациональную функцию

в форме Хэвисайта, используя формулы разложения (3), (4).

Решение

Уравнение полинома числителя имеет вид

.

Характеристическое уравнение имеет вид

.

Найдем корни характеристического уравнения

, .

Определим производную от полинома знаменателя

.

Определим коэффициенты разложения соответствующие по номеру полюсам

, .

Тогда форма Хэвисайта имеет вид

.

Пример

Представьте дробно-рациональную функцию

в форме Хэвисайта, используя формулы разложения (5), (6).

Решение

Представим в виде

Тогда

,

.

Ненулевые полюсы имеют вид

, .

Производная от

.

Определим коэффициенты разложения

,,.

Тогда форма Хэвисайта имеет вид

.

 

Импульсные функции

 

Реальные сигналы (переменные и воздействия), встречающиеся в системах управления, обычно представляют с помощью некоторых идеализаций – импульсных функций. Чаще всего используют ступенчатую единичную функцию (функцию Хэвисайта) и дельта-функцию (функцию Дирака), которые описываются следующим образом:

Графики этих функций показаны на рис. 3.

Рис. 3

Для единичной и дельта-функции справедливо

.

Таким образом, дельта-функция представляет собой мгновенный импульс, равный бесконечности в нулевой момент времени и нулю в другие моменты, площадь которого постоянна и равна единице. Поэтому иногда называют единичным импульсом.

 

Контрольные вопросы и задачи

  1. Как определить порядок дробно-рациональной функции?

  2. Поясните процедуру преобразования функции к форме Боде.

  3. Какие полюсы дробно-рациональной функции называют простыми?

  4. В чем состоит идеализация представления реального сигнала единичной ступенчатой функцией?

  5. Представьте дробно-рациональную функцию

  6. в форме Боде.

    Ответ:

    .

  7. Представьте дробно-рациональную функцию

  8. в форме Хэвисайта.

    Ответ:

    .

  9. Представьте дробно-рациональную функцию

  10. в форме Хэвисайта.

    Ответ:

    .

Рейтинг@Mail.ru