Лекция No4

 

Работа однофазной мостовой схемы выпрямления

 

1. Неуправляемая схема выпрямления

 

Пусть имеем неуправляемую мостовую двухтактную схему рис.1.

Рис.1. Двухполупериодная мостовая схема

 

Как видно из рис.1 вентили включаются так, что в первом полупериоде ток протекает через вентили 1 и 3, а во втором полупериоде ток протекает через вентили 2 и 4.

Форма кривых выпрямленного, фазных и анодных токов зависит от индуктивного сопротивления . Кривые токов и напряжений при приведены на осях 2,3,4,5 и 6 рис.2.

Аналогично рассмотренной ранее однотактной схеме имеем

, .

Амплитуда обратного напряжения

.

Ток вторичной обмотки трансформатора равен

.

Поэтому действующие значения токов обеих обмоток равны:

, .

Мощность первичной и вторичной обмоток, а также типовая мощность трансформатора

.

Рис.2. Кривые токов и напряжений двухтактной схемы

 

Так как кривые анодных токов представляют полусинусоиды, они содержат постоянные составляющие, первые гармоники и гармоники с четными порядковыми номерами

Кривые токов при

приведены на осях 7, 8 и 9 рис.2.

Действующие значения токов первичной и вторичной обмоток при

.

Мощность трансформатора

.

Амплитуда анодного тока вентиля

.

 

2. Работа однофазной мостовой схемы с углом регулирования

 

Диаграммы токов и напряжений на элементах будут такими же, как и для однофазного двухполупериодного выпрямителя со средней точкой.

Отличие заключается только в том, что амлитуда обратного напряжения на вентиле в мостовом выпрямителе будет в 2 раза меньше, чем в двухполупериодном нулевом выпрямителе.

При активной нагрузке работа схемы будет характеризоваться следующими основными соотношениями:

Рис.3. Однофазный мостовой выпрямитель

 

При активной нагрузке работа схемы будет характеризоваться следующими основными соотношениями:

; ; .

Однофазная мостовая схема, работающая с углом , имеет такие же формы токов и напряжений на ее элементах, как и в однофазном двухполупериодном выпрямителе со средней точкой.

Среднее значение выходного напряжения:

Максимальные значения напряжений на вентилях:

, ;

, .

Максимальное значение токов вентилей при активной нагрузке

.

 

3. Активно-индуктивная нагрузка с углом открытия больше нуля,

 

Наличие в цепи нагрузки индуктивности существенно изменяет характер электромагнитных процессов в схеме. Так, после начала работы выпрямителя нарастание тока в нагрузке будет происходить постепенно и тем медленнее, чем больше постоянная времени .

При наличии индуктивности выпрямленный ток становится более сглаженным и не успевает доходить до нуля в моменты, когда выпрямленное напряжение становится равным нулю.

При увеличении индуктивности или частоты переменной составляющей выпрямленного напряжения пульсации выпрямленного тока уменьшаются, а при значениях , равных 5-10 и более, расчетные соотношения в схеме будут незначительно отличатся от случая, когда или (). В этом случае можно считать, что вся переменная составляющая выпрямленного напряжения выделяется на индуктивности , а постоянная – на сопротивлении .

Несмотря на то, что управляющие импульсы поступают на вентили с задержкой на угол относительно моментов их естественного включения (), длительность протекания тока через каждый вентиль остается равной половине периода напряжения питающей сети.

При ток в цепи нагрузки идеально сглажен, а токи вентилей имеют прямоугольную форму, но в отличие от схемы, работающей с углом , прямоугольники токов будут сдвинуты относительно выпрямленного напряжения на угол . Сдвиг тока относительно напряжения на угол приводит к появлению в выпрямленном напряжении отрицательных участков, что вызывает снижение его среднего значения (рис.4).

Рис.4. Диаграммы токов и напряжений двухполупериодного выпрямителя при активно-индуктивной нагрузке и ()

 

Учитывая, что форма выпрямленного напряжения повторяется в интервале углов от до , среднее значение выпрямленного напряжения можно найти по формуле

(1)

Согласно (1) среднее значение выпрямленного напряжения становится равным нулю при . В этом случае в выпрямленном напряжении площади положительного и отрицательного участков равны между собой и постоянная составляющая отсутствует [1, 2].

Регулировочная характеристика для активно-индуктивной нагрузки показана на рис.5 кривая 2.

Рис.5. Регулировочные характеристики однофазного двухполупериодного выпрямителя: 1 – при активной нагрузке; 2 – при активно-индуктивной нагрузке

 

Если величина невелика и такова, что энергии, запасенной в индуктивности на интервале, когда , оказывается недостаточно для обеспечения протекания тока в течение половины периода, то вентиль, проводящий этот ток, выключится раньше, чем будет подан отпирающий импульс на другой вентиль, т.е. раньше момента, определяемого углом . Такой режим работы схемы при активно-индуктивной нагрузке называется режимом с прерывистым выпрямленным током (рис.6).

Рис.6. Диаграммы токов и напряжений двухполупериодного выпрямителя при режиме прерывистых токов

 

При одинаковых значениях угла ? среднее значение выпрямленного напряжения в режиме с прерывистым током будет больше, чем в режиме с непрерывным током, благодаря уменьшению отрицательного участка в кривой выпрямленного напряжения, но меньше, чем при работе выпрямителя на активную нагрузку.

Поэтому в режимах с прерывистым током регулировочные характеристики будут находиться между кривыми 1 и 2 в заштрихованной области, указанной на рис.5.

Режим работы схемы, когда ток в вентилях спадает до нуля точно в момент включения очередного вентиля, называется граничным.

Очевидно, что чем больше угол ?, тем больше должна быть индуктивность , чтобы обеспечить режим работы схемы с непрерывным током . Индуктивность, обеспечивающая при заданных параметрах–схемы граничный режим работы, называют критической.

При прерывистом токе и постоянной нагрузке трансформатор, вентили, коллектор работают в более тяжелом режиме, так как при одном и том же значении выпрямленного тока действующее значение токов в элементах схемы увеличивается. Поэтому в мощных выпрямителях, работающих с широким диапазоном изменения угла , индуктивность обычно выбирают из условия обеспечения непрерывности выпрямленного тока.

Граница перехода к непрерывному выпрямленному току зависит от соотношения

,

характеризующегося углом

.

Пока

,

режим непрерывен, а при

ток имеет прерывистый характер.

В режиме непрерывного тока постоянная составляющая выпрямленного напряжения

.

Ток вентиля в прерывистом режиме

.

Из последнего выражения видно, что когда , ток , т.е. на границе перехода от прерывистого к непрерывному режиму угол [1, 2].

Обозначив угол протекания тока через вентиль равным и подставляя в выражение

,

получим уравнение

,

дающее зависимость между углами и .

Постоянная составляющая выпрямленного напряжения

.

Постоянная составляющая выпрямленного тока в обоих случаях

.

 

ЛИТЕРАТУРА

 

  1. 1. Архангельский Н.Л., Курнышев Б.С. Характеристики полупроводниковых преобразователей/ Иван. гос. энерг. ун-т. – Иваново, 2000. – 72 с.

  2. 2. Архангельский Н.Л., Курнышев Б.С., Литвинский А.Н. Характеристики и защита полупроводниковых преобразователей/ – Иван. гос. энерг. ун-т. – Иваново, 2000. – 96 с.

 

Контрольные вопросы

 

1. Что такое зона прерывистых токов и от параметров схемы она зависит?

2. Что нужно сделать в схеме, чтобы уменьшить зону прерывистых токов?

3. Каким выражением описывается зона прерывистых токов и чем отличается от зоны непрерывных токов?

4. Где может располагаться регулировочная характеристика с конечными значениями и ?

5. Найти точку «С» регулировочной характеристики с углом нагрузки соответствующую максимальномк углу управления .

Ответ:

.

6. Тоже, что и задание 5, но при .

Ответ:

.

7. Найти ЭДС преобразователя при нагрузке с и , .

Ответ:

143 В.

8. Найти действующее напряжение на вторичной обмотке вентильного трансформатора, если .

Ответ:

198 В.

Рейтинг@Mail.ru